
Appendix A

Possible Solutions
Since the first edition of this book, the single question I have been asked

the most is “Where are the answers to the exercises?”

My reluctance centered around the first occurrence of the word the in

that question.

The answers? There’s more than one right answer, of course. Many,

many more. These aren’t math problems. Even the first exercises,

which are sort of like math problems, have many possible solutions.

If, instead of writing a program about orange trees or the minutes in a

decade, you were asked to write a poem about them, it would be silly (if

not downright harmful) to include “the answers.”

That was my reasoning, anyway. Kind of stupid, in retrospect—while

these aren’t math problems, neither are they poems.

Still, I’m really attached to the idea that there’s no one right answer

here, so I did a few things to drive that point home. First, notice the

title to this appendix: possible solutions, not the solutions.

Then I went through and did each exercise twice. Yes, seriously. The No more complaining

about how hard the

exercises were, OK? At

least you had to do them

only once.

first time is to show just one possible way that you could have done it,

given what you have learned up to that point in the book. The second

time is to show you how I would do it, using whatever techniques tickled

my fancy. Some of these techniques are not covered in this book, so it’s

OK if you don’t understand exactly what’s going on. These programs

tend to be more complex but also shorter (sometimes much shorter)

and sometimes more correct or robust. Often cuter. (I like cute code.)

Ignore them or study them as you prefer.

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 2 151

A.1 Exercises from Chapter 2

Hours in a Year (from on page 12)

How you could do it:

puts 24*365

8760

How I would do it:

depends on if it's a leap year

puts 24*365

puts "(or #{24*366} on occasion)"

8760

(or 8784 on occasion)

Minutes in a Decade (from on page 12)

How you could do it:

puts 60*24*(365*10 + 2)

5258880

How I would do it:

depends on how many leap years in that decade

puts "#{60*24*(365*10 + 2)} or #{60*24*(365*10 + 3)}"

5258880 or 5260320

Your Age in Seconds (from on page 13)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=151
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 5 152

puts 60*60*24*(365*32 + 9)

1009929600

How I would do it:

puts(Time.new - Time.gm(1976, 8, 3, 13, 31))

1040353874.92412

Our Dear Author’s Age (from on page 13)

How you could do it:

puts 1025000000/(60*60*24*365)

32

And that’s pretty much how I would do it, too. :)

A.2 Exercises from Chapter 5

Full Name Greeting (from on page 28)

How you could do it:

puts 'What is your first name?'

f_name = gets.chomp

puts 'What is your middle name?'

m_name = gets.chomp

puts 'What is your last name?'

l_name = gets.chomp

full_name = f_name + ' ' + m_name + ' ' + l_name

puts 'Hello, ' + full_name + '!'

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=152
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 5 153

What is your first name?

Sam

What is your middle name?

I

What is your last name?

Am

Hello, Sam I Am!

How I would do it:

puts "What's your first name?"

f_name = gets.chomp

puts "What's your middle name?"

m_name = gets.chomp

puts "What's your last name?"

l_name = gets.chomp

puts "Chris Pine is cooler than you, #{f_name} #{m_name} #{l_name}."

What's your first name?

Marvin

What's your middle name?

K.

What's your last name?

Mooney

Chris Pine is cooler than you, Marvin K. Mooney.

Bigger, Better Favorite Number (from on page 28)

How you could do it:

puts 'Hey! What\'s your favorite number?'

fav_num = gets.chomp.to_i

better_num = fav_num + 1

puts 'That\'s ok, I guess, but isn\'t '+better_num.to_s+' just a bit better?'

Hey! What's your favorite number?

5

That's ok, I guess, but isn't 6 just a bit better?

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=153
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 6 154

How I would do it:

puts "Hey! What's your favorite number?"

fav_num = gets.chomp.to_i

puts "That's ok, I guess, but isn't #{fav_num + 1} just a bit better?"

Hey! What's your favorite number?

5

That's ok, I guess, but isn't 6 just a bit better?

A.3 Exercises from Chapter 6

Angry Boss (from on page 36)

How you could do it:

puts 'CAN\'T YOU SEE I\'M BUSY?! MAKE IT FAST, JOHNSON!'

request = gets.chomp

puts 'WHADDAYA MEAN "' + request.upcase + '"?!? YOU\'RE FIRED!!'

CAN'T YOU SEE I'M BUSY?! MAKE IT FAST, JOHNSON!

I want a raise

WHADDAYA MEAN "I WANT A RAISE"?!? YOU'RE FIRED!!

How I would do it:

names = ['johnson', 'smith', 'weinberg', 'filmore']

puts "CAN'T YOU SEE I'M BUSY?! MAKE IT FAST, #{names[rand(4)].upcase}!"

request = gets.chomp

puts "WHADDAYA MEAN \"#{request.upcase}\"?!? YOU'RE FIRED!!"

CAN'T YOU SEE I'M BUSY?! MAKE IT FAST, WEINBERG!

I quit

WHADDAYA MEAN "I QUIT"?!? YOU'RE FIRED!!

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=154
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 7 155

Table of Contents (from on page 36)

How you could do it:

title = 'Table of Contents'.center(50)

chap_1 = 'Chapter 1: Getting Started'.ljust(30) + 'page 1'.rjust(20)

chap_2 = 'Chapter 2: Numbers'.ljust(30) + 'page 9'.rjust(20)

chap_3 = 'Chapter 3: Letters'.ljust(30) + 'page 13'.rjust(20)

puts title

puts

puts chap_1

puts chap_2

puts chap_3

Table of Contents

Chapter 1: Getting Started page 1

Chapter 2: Numbers page 9

Chapter 3: Letters page 13

And how would I do it? Well, that was a different exercise (at the end of

Chapter 8).

A.4 Exercises from Chapter 7

“99 Bottles of Beer on the Wall” (from on page 57)

How you could do it:

num_at_start = 5 # change to 99 if you want

num_now = num_at_start

while num_now > 2

puts num_now.to_s + ' bottles of beer on the wall, ' +

num_now.to_s + ' bottles of beer!'

num_now = num_now - 1

puts 'Take one down, pass it around, ' +

num_now.to_s + ' bottles of beer on the wall!'

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=155
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 7 156

puts "2 bottles of beer on the wall, 2 bottles of beer!"

puts "Take one down, pass it around, 1 bottle of beer on the wall!"

puts "1 bottle of beer on the wall, 1 bottle of beer!"

puts "Take one down, pass it around, no more bottles of beer on the wall!"

5 bottles of beer on the wall, 5 bottles of beer!

Take one down, pass it around, 4 bottles of beer on the wall!

4 bottles of beer on the wall, 4 bottles of beer!

Take one down, pass it around, 3 bottles of beer on the wall!

3 bottles of beer on the wall, 3 bottles of beer!

Take one down, pass it around, 2 bottles of beer on the wall!

2 bottles of beer on the wall, 2 bottles of beer!

Take one down, pass it around, 1 bottle of beer on the wall!

1 bottle of beer on the wall, 1 bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

How I would do it:

num_at_start = 5 # change to 99 if you want

num_bot = proc { |n| "#{n} bottle#{n == 1 ? '' : 's'}" }

num_at_start.downto(2) do |num|

puts "#{num_bot[num]} of beer on the wall, #{num_bot[num]} of beer!"

puts "Take one down, pass it around, #{num_bot[num-1]} of beer on the wall!"

end

puts "#{num_bot[1]} of beer on the wall, #{num_bot[1]} of beer!"

puts "Take one down, pass it around, no more bottles of beer on the wall!"

5 bottles of beer on the wall, 5 bottles of beer!

Take one down, pass it around, 4 bottles of beer on the wall!

4 bottles of beer on the wall, 4 bottles of beer!

Take one down, pass it around, 3 bottles of beer on the wall!

3 bottles of beer on the wall, 3 bottles of beer!

Take one down, pass it around, 2 bottles of beer on the wall!

2 bottles of beer on the wall, 2 bottles of beer!

Take one down, pass it around, 1 bottle of beer on the wall!

1 bottle of beer on the wall, 1 bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=156
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 7 157

Deaf Grandma (from on page 57)

How you could do it:

puts 'HEY THERE, SONNY! GIVE GRANDMA A KISS!'

while true

said = gets.chomp

if said == "BYE"

puts 'BYE SWEETIE!'

break

end

if said != said.upcase

puts 'HUH?! SPEAK UP, SONNY!'

else

random_year = 1930 + rand(21)

puts 'NO, NOT SINCE ' + random_year.to_s + '!'

end

end

HEY THERE, SONNY! GIVE GRANDMA A KISS!

hi, grandma

HUH?! SPEAK UP, SONNY!

HI, GRANDMA!

NO, NOT SINCE 1946!

HOW YOU DOING?

NO, NOT SINCE 1934!

I SAID, HOW YOU DOING?

NO, NOT SINCE 1937!

OK

NO, NOT SINCE 1946!

BYE

BYE SWEETIE!

How I would do it:

puts 'HEY THERE, SONNY! GIVE GRANDMA A KISS!'

while true

said = gets.chomp

break if said == "BYE"

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=157
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 7 158

response = if said != said.upcase

'HUH?! SPEAK UP, SONNY!'

else

"NO, NOT SINCE #{1930 + rand(21)}!"

end

puts response

end

puts 'BYE SWEETIE!'

HEY THERE, SONNY! GIVE GRANDMA A KISS!

hi, grandma

HUH?! SPEAK UP, SONNY!

HI, GRANDMA!

NO, NOT SINCE 1934!

HOW YOU DOING?

NO, NOT SINCE 1942!

I SAID, HOW YOU DOING?

NO, NOT SINCE 1941!

OK

NO, NOT SINCE 1938!

BYE

BYE SWEETIE!

Deaf Grandma Extended (from on page 57)

How you could do it:

puts 'HEY THERE, PEACHES! GIVE GRANDMA A KISS!'

bye_count = 0

while true

said = gets.chomp

if said == 'BYE'

bye_count = bye_count + 1

else

bye_count = 0

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=158
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 7 159

if bye_count >= 3

puts 'BYE-BYE CUPCAKE!'

break

end

if said != said.upcase

puts 'HUH?! SPEAK UP, SONNY!'

else

random_year = 1930 + rand(21)

puts 'NO, NOT SINCE ' + random_year.to_s + '!'

end

end

HEY THERE, PEACHES! GIVE GRANDMA A KISS!

HI, GRANDMA!

NO, NOT SINCE 1937!

BYE

NO, NOT SINCE 1937!

BYE

NO, NOT SINCE 1947!

ADIOS, MUCHACHA!

NO, NOT SINCE 1938!

BYE

NO, NOT SINCE 1935!

BYE

NO, NOT SINCE 1945!

BYE

BYE-BYE CUPCAKE!

How I would do it:

puts 'HEY THERE, PEACHES! GIVE GRANDMA A KISS!'

bye_count = 0

while true

said = gets.chomp

if said == 'BYE'

bye_count += 1

else

bye_count = 0

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=159
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 7 160

break if bye_count >= 3

response = if said != said.upcase

'HUH?! SPEAK UP, SONNY!'

else

"NO, NOT SINCE #{1930 + rand(21)}!"

end

puts response

end

puts 'BYE-BYE CUPCAKE!'

HEY THERE, PEACHES! GIVE GRANDMA A KISS!

HI, GRANDMA!

NO, NOT SINCE 1932!

BYE

NO, NOT SINCE 1935!

BYE

NO, NOT SINCE 1931!

ADIOS, MUCHACHA!

NO, NOT SINCE 1933!

BYE

NO, NOT SINCE 1930!

BYE

NO, NOT SINCE 1942!

BYE

BYE-BYE CUPCAKE!

Leap Years (from on page 58)

How you could do it:

puts 'Pick a starting year (like 1973 or something):'

starting = gets.chomp.to_i

puts 'Now pick an ending year:'

ending = gets.chomp.to_i

puts 'Check it out... these years are leap years:'

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=160
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 7 161

year = starting

while year <= ending

if year%4 == 0

if year%100 != 0 || year%400 == 0

puts year

end

end

year = year + 1

end

Pick a starting year (like 1973 or something):

1973

Now pick an ending year:

1977

Check it out... these years are leap years:

1976

How I would do it:

puts 'Pick a starting year (like 1973 or something):'

starting = gets.chomp.to_i

puts 'Now pick an ending year:'

ending = gets.chomp.to_i

puts 'Check it out... these years are leap years:'

(starting..ending).each do |year|

next if year%4 != 0

next if year%100 == 0 && year%400 != 0

puts year

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=161
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 8 162

Pick a starting year (like 1973 or something):

1973

Now pick an ending year:

1977

Check it out... these years are leap years:

1976

A.5 Exercises from Chapter 8

Building and Sorting an Array (from on page 65)

How you could do it:

puts 'Give me some words, and I will sort them:'

words = []

while true

word = gets.chomp

if word == ''

break

end

words.push word

end

puts 'Sweet! Here they are, sorted:'

puts words.sort

Give me some words, and I will sort them:

banana

apple

cherry

Sweet! Here they are, sorted:

apple

banana

cherry

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=162
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 8 163

How I would do it:

puts 'Give me some words, and I will sort them:'

words = []

while true

word = gets.chomp

break if word.empty?

words << word

end

puts 'Sweet! Here they are, sorted:'

puts words.sort

Give me some words, and I will sort them:

banana

apple

cherry

Sweet! Here they are, sorted:

apple

banana

cherry

Table of Contents, Revisited (from on page 66)

How you could do it:

title = 'Table of Contents'

chapters = [['Getting Started', 1],

['Numbers', 9],

['Letters', 13]]

puts title.center(50)

puts

chap_num = 1

chapters.each do |chap|

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=163
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 8 164

name = chap[0]

page = chap[1]

beginning = 'Chapter ' + chap_num.to_s + ': ' + name

ending = 'page ' + page.to_s

puts beginning.ljust(30) + ending.rjust(20)

chap_num = chap_num + 1

end

Table of Contents

Chapter 1: Getting Started page 1

Chapter 2: Numbers page 9

Chapter 3: Letters page 13

How I would do it:

title = 'Table of Contents'

chapters = [['Getting Started', 1],

['Numbers', 9],

['Letters', 13]]

puts title.center(50)

puts

chapters.each_with_index do |chap, idx|

name, page = chap

chap_num = idx + 1

beginning = "Chapter #{chap_num}: #{name}"

ending = "page #{page}"

puts beginning.ljust(30) + ending.rjust(20)

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=164
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 9 165

Table of Contents

Chapter 1: Getting Started page 1

Chapter 2: Numbers page 9

Chapter 3: Letters page 13

A.6 Exercises from Chapter 9

Improved ask Method (from on page 80)

How you could do it:

def ask question

while true

puts question

reply = gets.chomp.downcase

if reply == 'yes'

return true

end

if reply == 'no'

return false

end

If we got this far, then we're going to loop

and ask the question again.

puts 'Please answer "yes" or "no".'

end

answer # This is what we return (true or false).

end

likes_it = ask 'Do you like eating tacos?'

puts likes_it

Do you like eating tacos?

yes

true

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=165
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 9 166

How I would do it:

def ask question

while true

puts question

reply = gets.chomp.downcase

return true if reply == 'yes'

return false if reply == 'no'

puts 'Please answer "yes" or "no".'

end

answer # This is what we return (true or false).

end

puts(ask('Do you like eating tacos?'))

Do you like eating tacos?

yes

true

Old-School Roman Numerals (from on page 81)

How you could do it:

def old_roman_numeral num

roman = ''

roman = roman + 'M' * (num / 1000)

roman = roman + 'D' * (num % 1000 / 500)

roman = roman + 'C' * (num % 500 / 100)

roman = roman + 'L' * (num % 100 / 50)

roman = roman + 'X' * (num % 50 / 10)

roman = roman + 'V' * (num % 10 / 5)

roman = roman + 'I' * (num % 5 / 1)

roman

end

puts(old_roman_numeral(1999))

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=166
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 9 167

MDCCCCLXXXXVIIII

How I would do it:

def old_roman_numeral num

raise 'Must use positive integer' if num <= 0

roman = ''

roman << 'M' * (num / 1000)

roman << 'D' * (num % 1000 / 500)

roman << 'C' * (num % 500 / 100)

roman << 'L' * (num % 100 / 50)

roman << 'X' * (num % 50 / 10)

roman << 'V' * (num % 10 / 5)

roman << 'I' * (num % 5 / 1)

roman

end

puts(old_roman_numeral(1999))

MDCCCCLXXXXVIIII

“Modern” Roman Numerals (from on page 81)

How you could do it:

def roman_numeral num

thous = (num / 1000)

hunds = (num % 1000 / 100)

tens = (num % 100 / 10)

ones = (num % 10)

roman = 'M' * thous

if hunds == 9

roman = roman + 'CM'

elsif hunds == 4

roman = roman + 'CD'

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=167
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 9 168

else

roman = roman + 'D' * (num % 1000 / 500)

roman = roman + 'C' * (num % 500 / 100)

end

if tens == 9

roman = roman + 'XC'

elsif tens == 4

roman = roman + 'XL'

else

roman = roman + 'L' * (num % 100 / 50)

roman = roman + 'X' * (num % 50 / 10)

end

if ones == 9

roman = roman + 'IX'

elsif ones == 4

roman = roman + 'IV'

else

roman = roman + 'V' * (num % 10 / 5)

roman = roman + 'I' * (num % 5 / 1)

end

roman

end

puts(roman_numeral(1999))

MCMXCIX

How I would do it:

def roman_numeral num

raise 'Must use positive integer' if num <= 0

digit_vals = [['I', 5, 1],

['V', 10, 5],

['X', 50, 10],

['L', 100, 50],

['C', 500, 100],

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=168
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 169

['D', 1000, 500],

['M', nil, 1000]]

roman = ''

remaining = nil

Build string "roman" in reverse.

build_rev = proc do |l,m,n|

num_l = m ? (num % m / n) : (num / n)

full = m && (num_l == (m/n - 1))

if full && (num_l>1 || remaining)

must carry

remaining ||= l # carry l if not already carrying

else

if remaining

roman << l + remaining

remaining = nil

end

roman << l * num_l

end

end

digit_vals.each {|l,m,n| build_rev[l,m,n]}

roman.reverse

end

puts(roman_numeral(1999))

MIM

A.7 Exercises from Chapter 10

Rite of Passage: Sorting (from on page 88)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=169
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 170

def sort arr

rec_sort arr, []

end

def rec_sort unsorted, sorted

if unsorted.length <= 0

return sorted

end

So if we got here, then it means we still

have work to do.

smallest = unsorted.pop

still_unsorted = []

unsorted.each do |tested_object|

if tested_object < smallest

still_unsorted.push smallest

smallest = tested_object

else

still_unsorted.push tested_object

end

end

Now "smallest" really does point to the

smallest element that "unsorted" contained,

and all the rest of it is in "still_unsorted".

sorted.push smallest

rec_sort still_unsorted, sorted

end

puts(sort(['can','feel','singing','like','a','can']))

a

can

can

feel

like

singing

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=170
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 171

How I would do it (well, aside from just using the built-in sort method):

The well-known quicksort algorithm.

def sort arr

return arr if arr.length <= 1

middle = arr.pop

less = arr.select{|x| x < middle}

more = arr.select{|x| x >= middle}

sort(less) + [middle] + sort(more)

end

p(sort(['can','feel','singing','like','a','can']))

["a", "can", "can", "feel", "like", "singing"]

Shuffle (from on page 90)

How you could do it:

def shuffle arr

shuf = []

while arr.length > 0

Randomly pick one element of the array.

rand_index = rand(arr.length)

Now go through each item in the array,

putting them all into new_arr except for the

randomly chosen one, which goes into shuf.

curr_index = 0

new_arr = []

arr.each do |item|

if curr_index == rand_index

shuf.push item

else

new_arr.push item

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=171
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 172

curr_index = curr_index + 1

end

Replace the original array with the new,

smaller array.

arr = new_arr

end

shuf

end

puts(shuffle([1,2,3,4,5,6,7,8,9]))

1

5

4

8

7

9

6

2

3

How I would do it:

def shuffle arr

arr.sort_by(&:rand)

end

p(shuffle([1,2,3,4,5,6,7,8,9]))

#<TypeError: wrong argument type Symbol (expected Proc)>

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=172
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 173

Dictionary Sort

(from on page 90)

How you could do it:

def dictionary_sort arr

rec_dict_sort arr, []

end

def rec_dict_sort unsorted, sorted

if unsorted.length <= 0

return sorted

end

So if we got here, then it means we still

have work to do.

smallest = unsorted.pop

still_unsorted = []

unsorted.each do |tested_object|

if tested_object.downcase < smallest.downcase

still_unsorted.push smallest

smallest = tested_object

else

still_unsorted.push tested_object

end

end

Now "smallest" really does point to the

smallest element that "unsorted" contained,

and all the rest of it is in "still_unsorted".

sorted.push smallest

rec_dict_sort still_unsorted, sorted

end

puts(dictionary_sort(['can','feel','singing.','like','A','can']))

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=173
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 174

A

can

can

feel

like

singing.

How I would do it:

The well-known quicksort algorithm.

def dictionary_sort arr

return arr if arr.length <= 1

middle = arr.pop

less = arr.select{|x| x.downcase < middle.downcase}

more = arr.select{|x| x.downcase >= middle.downcase}

sort(less) + [middle] + sort(more)

end

words = ['can','feel','singing.','like','A','can']

puts(dictionary_sort(words).join(' '))

A can can feel like singing.

Expanded english_number (from on page 97)

How you could do it:

def english_number number

if number < 0 # No negative numbers.

return 'Please enter a number that isn\'t negative.'

end

if number == 0

return 'zero'

end

No more special cases! No more returns!

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=174
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 175

num_string = '' # This is the string we will return.

ones_place = ['one', 'two', 'three',

'four', 'five', 'six',

'seven', 'eight', 'nine']

tens_place = ['ten', 'twenty', 'thirty',

'forty', 'fifty', 'sixty',

'seventy', 'eighty', 'ninety']

teenagers = ['eleven', 'twelve', 'thirteen',

'fourteen', 'fifteen', 'sixteen',

'seventeen', 'eighteen', 'nineteen']

zillions = [['hundred', 2],

['thousand', 3],

['million', 6],

['billion', 9],

['trillion', 12],

['quadrillion', 15],

['quintillion', 18],

['sextillion', 21],

['septillion', 24],

['octillion', 27],

['nonillion', 30],

['decillion', 33],

['undecillion', 36],

['duodecillion', 39],

['tredecillion', 42],

['quattuordecillion', 45],

['quindecillion', 48],

['sexdecillion', 51],

['septendecillion', 54],

['octodecillion', 57],

['novemdecillion', 60],

['vigintillion', 63],

['googol', 100]]

"left" is how much of the number

we still have left to write out.

"write" is the part we are

writing out right now.

write and left...get it? :)

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=175
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 176

left = number

while zillions.length > 0

zil_pair = zillions.pop

zil_name = zil_pair[0]

zil_base = 10 ** zil_pair[1]

write = left/zil_base # How many zillions left?

left = left - write*zil_base # Subtract off those zillions.

if write > 0

Now here's the recursion:

prefix = english_number write

num_string = num_string + prefix + ' ' + zil_name

if left > 0

So we don't write 'two billionfifty-one'...

num_string = num_string + ' '

end

end

end

write = left/10 # How many tens left?

left = left - write*10 # Subtract off those tens.

if write > 0

if ((write == 1) and (left > 0))

Since we can't write "tenty-two" instead of

"twelve", we have to make a special exception

for these.

num_string = num_string + teenagers[left-1]

The "-1" is because teenagers[3] is

'fourteen', not 'thirteen'.

Since we took care of the digit in the

ones place already, we have nothing left to write.

left = 0

else

num_string = num_string + tens_place[write-1]

The "-1" is because tens_place[3] is

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=176
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 177

'forty', not 'thirty'.

end

if left > 0

So we don't write 'sixtyfour'...

num_string = num_string + '-'

end

end

write = left # How many ones left to write out?

left = 0 # Subtract off those ones.

if write > 0

num_string = num_string + ones_place[write-1]

The "-1" is because ones_place[3] is

'four', not 'three'.

end

Now we just return "num_string"...

num_string

end

puts english_number(0)

puts english_number(9)

puts english_number(10)

puts english_number(11)

puts english_number(17)

puts english_number(32)

puts english_number(88)

puts english_number(99)

puts english_number(100)

puts english_number(101)

puts english_number(234)

puts english_number(3211)

puts english_number(999999)

puts english_number(1000000000000)

puts english_number(109238745102938560129834709285360238475982374561034)

zero

nine

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=177
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 178

ten

eleven

seventeen

thirty-two

eighty-eight

ninety-nine

one hundred

one hundred one

two hundred thirty-four

three thousand two hundred eleven

nine hundred ninety-nine thousand nine hundred ninety-nine

one trillion

one hundred nine quindecillion two hundred

thirty-eight quattuordecillion seven hundred forty-five ...

And that’s just about how I would do it, too.

Wedding Number (from on page 97)

I told you I didn’t do this one. It was a joke! Move on!

“Ninety-nine Bottles of Beer on the Wall.” (from on page 97)

How you could do it:

english_number as above, plus this:

num_at_start = 5 # change to 9999 if you want

num_now = num_at_start

while num_now > 2

puts english_number(num_now).capitalize + ' bottles of beer on the wall, ' +

english_number(num_now) + ' bottles of beer!'

num_now = num_now - 1

puts 'Take one down, pass it around, ' +

english_number(num_now) + ' bottles of beer on the wall!'

end

puts "Two bottles of beer on the wall, two bottles of beer!"

puts "Take one down, pass it around, one bottle of beer on the wall!"

puts "One bottle of beer on the wall, one bottle of beer!"

puts "Take one down, pass it around, no more bottles of beer on the wall!"

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=178
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 10 179

Five bottles of beer on the wall, five bottles of beer!

Take one down, pass it around, four bottles of beer on the wall!

Four bottles of beer on the wall, four bottles of beer!

Take one down, pass it around, three bottles of beer on the wall!

Three bottles of beer on the wall, three bottles of beer!

Take one down, pass it around, two bottles of beer on the wall!

Two bottles of beer on the wall, two bottles of beer!

Take one down, pass it around, one bottle of beer on the wall!

One bottle of beer on the wall, one bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

How I would do it:

english_number as above, plus this:

num_at_start = 5 # change to 9999 if you want

num_bot = proc { |n| "#{english_number n} bottle#{n == 1 ? '' : 's'}" }

num_at_start.downto(2) do |num|

bottles =

puts "#{num_bot[num]} of beer on the wall, #{num_bot[num]} of beer!".capitalize

puts "Take one down, pass it around, #{num_bot[num-1]} of beer on the wall!"

end

puts "#{num_bot[1]} of beer on the wall, #{num_bot[1]} of beer!".capitalize

puts "Take one down, pass it around, no more bottles of beer on the wall!"

Five bottles of beer on the wall, five bottles of beer!

Take one down, pass it around, four bottles of beer on the wall!

Four bottles of beer on the wall, four bottles of beer!

Take one down, pass it around, three bottles of beer on the wall!

Three bottles of beer on the wall, three bottles of beer!

Take one down, pass it around, two bottles of beer on the wall!

Two bottles of beer on the wall, two bottles of beer!

Take one down, pass it around, one bottle of beer on the wall!

One bottle of beer on the wall, one bottle of beer!

Take one down, pass it around, no more bottles of beer on the wall!

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=179
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 11 180

A.8 Exercises from Chapter 11

Safer Picture Downloading (from on page 110)

Well, since I was asking you to adapt it to your computer, I can’t really

show you how to do it. I will show you the program I actually wrote,

though.

It’s a bit more complex that the other examples here, partly because it’s

a real, working tool.

For Katy, with love.

Download pictures from camera card.

require 'win32ole'

STDOUT.sync = true

Thread.abort_on_exception = true

Dir.chdir 'C:\Documents and Settings\Chris\Desktop\pictureinbox'

Always look here for pics.

pic_names = Dir['!undated/**/*.{jpg,avi}']

thm_names = Dir['!undated/**/*.{thm}']

Scan for memory cards in the card reader.

WIN32OLE.new("Scripting.FileSystemObject").Drives.each() do |x|

#driveType 1 is removable disk

if x.DriveType == 1 && x.IsReady

pic_names += Dir[x.DriveLetter+':/**/*.{jpg,avi}']

thm_names += Dir[x.DriveLetter+':/**/*.{thm}']

end

end

months = %w(jan feb mar apr may jun jul aug sep oct nov dec)

encountered_error = false

print "Downloading #{pic_names.size} files: "

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=180
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 11 181

pic_names.each do |name|

print '.'

is_movie = (name[-3..-1].downcase == 'avi')

if is_movie

orientation = 0

new_name = File.open(name) do |f|

f.seek(0x144,IO::SEEK_SET)

f.read(20)

end

new_name[0...3] = '%.2d' % (1 + months.index(new_name[0...3].downcase))

new_name = new_name[-4..-1] + ' ' + new_name[0...-5]

else

new_name, orientation = File.open(name) do |f|

f.seek(0x36, IO::SEEK_SET)

orientation_ = f.read(1)[0]

f.seek(0xbc, IO::SEEK_SET)

new_name_ = f.read(19)

[new_name_, orientation_]

end

end

[4,7,10,13,16].each {|n| new_name[n] = '.'}

if new_name[0] != '2'[0]

encountered_error = true

puts "\n"+'ERROR: Could not process "'+name+

'" because it\'s not in the proper format!'

next

end

save_name = new_name + (is_movie ? '.orig.avi' : '.jpg')

Make sure we don't save over another file!!

while FileTest.exist? save_name

new_name += 'a'

save_name = new_name + (is_movie ? '.orig.avi' : '.jpg')

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=181
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 11 182

case orientation

when 6

‘convert "#{name}" -rotate "90>" "#{save_name}"‘

File.delete name

when 8

‘convert "#{name}" -rotate "-90>" "#{save_name}"‘

File.delete name

else

File.rename name, save_name

end

end

print "\nDeleting #{thm_names.size} THM files: "

thm_names.each do |name|

print '.'

File.delete name

end

If something bad happened, make sure she

sees the error message before the window closes.

if encountered_error

puts

puts "Press [Enter] to finish."

puts

gets

end

Build Your Own Playlist (from on page 110)

How you could do it:

using the shuffle method as defined above

all_oggs = shuffle(Dir['**/*.ogg'])

File.open 'playlist.m3u', 'w' do |f|

all_oggs.each do |ogg|

f.write ogg+"\n"

end

end

puts 'Done!'

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=182
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 11 183

And that’s exactly how I’d do it, too.

Build a Better Playlist (from on page 110)

How you could do it:

def music_shuffle filenames

We don't want a perfectly random shuffle, so let's

instead do a shuffle like card-shuffling. Let's

shuffle the "deck" twice, then cut it once. That's

not enough times to make a perfect shuffle, but it

does mix things up a bit.

Before we do anything, let's actually *sort* the

input, since we don't know how shuffled it might

already be, and we don't want it to be *too* random.

filenames = filenames.sort

len = filenames.length

Now we shuffle twice.

2.times do

l_idx = 0 # index of next card in left pile

r_idx = len/2 # index of next card in right pile

shuf = []

NOTE: If we have an odd number of "cards",

then the right pile will be larger.

while shuf.length < len

if shuf.length%2 == 0

take card from right pile

shuf.push(filenames[r_idx])

r_idx = r_idx + 1

else

take card from left pile

shuf.push(filenames[l_idx])

l_idx = l_idx + 1

end

end

filenames = shuf

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=183
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 11 184

And cut the deck.

arr = []

cut = rand(len) # index of card to cut at

idx = 0

while idx < len

arr.push(filenames[(idx+cut)%len])

idx = idx + 1

end

arr

end

songs = ['aa/bbb', 'aa/ccc', 'aa/ddd',

'AAA/xxxx', 'AAA/yyyy', 'AAA/zzzz', 'foo/bar']

puts(music_shuffle(songs))

foo/bar

AAA/yyyy

aa/bbb

aa/ddd

AAA/xxxx

AAA/zzzz

aa/ccc

Well, that’s OK, I guess. It’s not all that random, and maybe if you

had a larger playlist you’d want to shuffle it three or four times...I don’t

really know.

A better way would be mix more carefully and on every level (genre,

artist, album). For example, if I have a playlist that is two-thirds lounge

and one-third jazz, I want a jazz song roughly every third song (and

rarely two in a row and never three in a row). Further, if I had, among

all the jazz songs, only two by Kurt Elling (travesty, I know), then one

should be somewhere in the first half of the playlist, and the other

should be somewhere in the last half. (But where in the respective

halves they appear should be truly random.) And all these constraints

must be met simultaneously.

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=184
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 11 185

What I do is find similar songs (let’s say songs on the same CD), mix

them up, and spread them out as far away from each other as I can in

the next grouping (say, songs by the same artist). Then I do the same

for the next level up (say, genre). The nice thing is that this algorithm

is recursive, so I can add levels for free if I want. For example, I have a

Billie Holiday CD with multiple recordings of one of the songs. I like it,

but I’d like those to be spread out as far from each other as possible in

the playlist (while respecting all other constraints at higher levels). No

problem—I just make a directory inside the CD directory and move the

similar recordings all in there, and the recursion takes care of the rest!

Enough talk; here’s how I would do it:

def music_shuffle filenames

songs_and_paths = filenames.map do |s|

[s, s.split('/')] # [song, path]

end

tree = {:root => []}

put each song into the tree

insert_into_tree = proc do |branch, song, path|

if path.length == 0 # add to current branch

branch[:root] << song

else # delve deeper

sub_branch = path[0]

path.shift # like "pop", but pops off the front

if !branch[sub_branch]

branch[sub_branch] = {:root => []}

end

insert_into_tree[branch[sub_branch], song, path]

end

end

songs_and_paths.each{|sp| insert_into_tree[tree, *sp]}

recursively:

- shuffle sub-branches (and root)

- weight each sub-branch (and root)

- merge (shuffle) these groups together

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=185
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 11 186

shuffle_branch = proc do |branch|

shuffled_subs = []

branch.each do |key, unshuffled|

shuffled_subs << if key == :root

unshuffled # At this level, these are all duplicates.

else

shuffle_branch[unshuffled]

end

end

weighted_songs = []

shuffled_subs.each do |shuffled_songs|

shuffled_songs.each_with_index do |song, idx|

num = shuffled_songs.length.to_f

weight = (idx + rand) / num

weighted_songs << [song, weight]

end

end

weighted_songs.sort_by{|s,v| v}.map{|s,v| s}

end

shuffle_branch[tree]

end

songs = ['aa/bbb', 'aa/ccc', 'aa/ddd',

'AAA/xxxx', 'AAA/yyyy', 'AAA/zzzz', 'foo/bar']

puts(music_shuffle(songs))

AAA/yyyy

aa/ccc

aa/bbb

foo/bar

AAA/zzzz

AAA/xxxx

aa/ddd

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=186
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 12 187

It might be hard to tell with such a tiny playlist, but with 500 songs

you really begin to appreciate how well this method works.

A.9 Exercises from Chapter 12

One Billion Seconds! (from on page 115)

Well, I don’t know your brithday, so I don’t know how you’d do it, but

here’s how I would do it:

I don't know what second I was born.

puts(Time.gm(1976, 8, 3, 13, 31) + 10**9)

And yes, I had a party. It was awesome

(at least the parts I remember).

Fri Apr 11 15:17:40 UTC 2008

Happy Birthday! (from on page 115)

How you could do it:

puts 'What year were you born?'

b_year = gets.chomp.to_i

puts 'What month were you born? (1-12)'

b_month = gets.chomp.to_i

puts 'What day of the month were you born?'

b_day = gets.chomp.to_i

b = Time.local(b_year, b_month, b_day)

t = Time.new

age = 1

while Time.local(b_year + age, b_month, b_day) <= t

puts 'SPANK!'

age = age + 1

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=187
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 12 188

What year were you born?

2002

What month were you born? (1-12)

2

What day of the month were you born?

20th

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

How I would do it:

puts 'Hey, when were you born? (Please use YYYYMMDD format.)'

input = gets.chomp

b_year = input[0..3].to_i

b_month = input[4..5].to_i

b_day = input[6..7].to_i

t = Time.new

t_year = t.year

t_month = t.month

t_day = t.day

age = t_year - b_year

if t_month < b_month || (t_month == b_month && t_day < b_day)

age -= 1

end

if t_month == b_month && t_day == b_day

puts 'HAPPY BIRTHDAY!!'

end

age.times { puts 'SPANK!' }

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=188
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 12 189

Hey, when were you born? (Please use YYYYMMDD format.)

20020220

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

SPANK!

Party Like It’s roman_to_integer mcmxcix! (from on page 120)

How you could do it:

def roman_to_integer roman

digit_vals = {'i' => 1,

'v' => 5,

'x' => 10,

'l' => 50,

'c' => 100,

'd' => 500,

'm' => 1000}

total = 0

prev = 0

index = roman.length - 1

while index >= 0

c = roman[index].chr.downcase

index = index - 1

val = digit_vals[c]

if !val

puts 'This is not a valid roman numeral!'

return

end

if val < prev

val = val * -1

else

prev = val

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=189
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 12 190

total = total + val

end

total

end

puts(roman_to_integer('mcmxcix'))

puts(roman_to_integer('CCCLXV'))

1999

365

How I would do it:

def roman_to_integer roman

digit_vals = {'i' => 1,

'v' => 5,

'x' => 10,

'l' => 50,

'c' => 100,

'd' => 500,

'm' => 1000}

total = 0

prev = 0

roman.reverse.each_char do |c_or_C|

c = c_or_C.downcase

val = digit_vals[c]

if !val

puts 'This is not a valid roman numeral!'

return

end

if val < prev

val *= -1

else

prev = val

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=190
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 12 191

total += val

end

total

end

puts(roman_to_integer('mcmxcix'))

puts(roman_to_integer('CCCLXV'))

#<NoMethodError: undefined method ‘each_char' for "xicxmcm":String>

Birthday Helper! (from on page 120)

How you could do it:

First, load in the birthdates.

birth_dates = {}

File.read('birthdates.txt').each_line do |line|

line = line.chomp

Find the index of first comma,

so we know where the name ends.

first_comma = 0

while line[first_comma].chr != ',' &&

first_comma < line.length

first_comma = first_comma + 1

end

name = line[0..(first_comma - 1)]

date = line[-12..-1]

birth_dates[name] = date

end

Now ask the user which one they want to know.

puts 'Whose birthday would you like to know?'

name = gets.chomp

date = birth_dates[name]

if date == nil

puts "Oooh, I don't know that one..."

else

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=191
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 12 192

puts date[0..5]

end

Whose birthday would you like to know?

Christopher Plummer

Dec 13

How I would do it:

First, load in the birthdates.

birth_dates = {}

File.readlines('birthdates.txt').each do |line|

name, date, year = line.split(',')

birth_dates[name] = Time.gm(year, *(date.split))

end

Now ask the user which one they want to know.

puts 'Whose birthday would you like to know?'

name = gets.chomp

bday = birth_dates[name]

if bday == nil

puts "Oooh, I don't know that one..."

else

now = Time.new

age = now.year - bday.year

if now.month > bday.month || (now.month == bday.month && now.day > bday.day)

age += 1

end

if now.month == bday.month && now.day == bday.day

puts "#{name} turns #{age} TODAY!!"

else

date = bday.strftime "%b %d"

puts "#{name} will be #{age} on #{date}."

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=192
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 13 193

Whose birthday would you like to know?

Christopher Pine

Christopher Pine will be 33 on Aug 03.

A.10 Exercises from Chapter 13

Extend the Built-in Classes (from on page 123)

How you could do it:

class Array

def shuffle

arr = self

Now we can just copy the old shuffle method.

shuf = []

while arr.length > 0

Randomly pick one element of the array.

rand_index = rand(arr.length)

Now go through each item in the array,

putting them all into new_arr except for

the randomly chosen one, which goes into

shuf.

curr_index = 0

new_arr = []

arr.each do |item|

if curr_index == rand_index

shuf.push item

else

new_arr.push item

end

curr_index = curr_index + 1

end

Replace the original array with the new,

smaller array.

arr = new_arr

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=193
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 13 194

shuf

end

end

class Integer

def factorial

if self <= 1

1

else

self * (self-1).factorial

end

end

def to_roman

I chose old-school roman numerals just to save space.

roman = ''

roman = roman + 'M' * (self / 1000)

roman = roman + 'D' * (self % 1000 / 500)

roman = roman + 'C' * (self % 500 / 100)

roman = roman + 'L' * (self % 100 / 50)

roman = roman + 'X' * (self % 50 / 10)

roman = roman + 'V' * (self % 10 / 5)

roman = roman + 'I' * (self % 5 / 1)

roman

end

end

puts [1,2,3,4,5].shuffle

puts 7.factorial

puts 73.to_roman

3

5

4

1

2

5040

LXXIII

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=194
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 13 195

How I would do it:

class Array

def shuffle

sort_by(&:rand) # "self" is implied, remember?

end

end

class Integer

def factorial

raise 'Must not use negative integer' if self < 0

(self <= 1) ? 1 : self * (self-1).factorial

end

def to_roman

I chose old-school roman numerals just to save space.

raise 'Must use positive integer' if self <= 0

roman = ''

roman << 'M' * (self / 1000)

roman << 'D' * (self % 1000 / 500)

roman << 'C' * (self % 500 / 100)

roman << 'L' * (self % 100 / 50)

roman << 'X' * (self % 50 / 10)

roman << 'V' * (self % 10 / 5)

roman << 'I' * (self % 5 / 1)

roman

end

end

Get ready for the pure awesome...

p 7.factorial.to_roman.split(//).shuffle

["X", "X", "M", "M", "M", "X", "M", "X", "M"]

Orange Tree (from on page 133)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=195
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 13 196

class OrangeTree

def initialize

@height = 0

@orange_count = 0

@alive = true

end

def height

if @alive

@height

else

'A dead tree is not very tall. :('

end

end

def count_the_oranges

if @alive

@orange_count

else

'A dead tree has no oranges. :('

end

end

def one_year_passes

if @alive

@height = @height + 0.4

@orange_count = 0 # old oranges fall off

if @height > 10 && rand(2) > 0

tree dies

@alive = false

'Oh, no! The tree is too old, and has died. :('

elsif @height > 2

new oranges grow

@orange_count = (@height * 15 - 25).to_i

"This year your tree grew to #{@height}m tall," +

" and produced #{@orange_count} oranges."

else

"This year your tree grew to #{@height}m tall," +

" but is still too young to bear fruit."

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=196
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 13 197

else

'A year later, the tree is still dead. :('

end

end

def pick_an_orange

if @alive

if @orange_count > 0

@orange_count = @orange_count - 1

'You pick a juicy, delicious orange!'

else

'You search every branch, but find no oranges.'

end

else

'A dead tree has nothing to pick. :('

end

end

end

ot = OrangeTree.new

23.times do

ot.one_year_passes

end

puts(ot.one_year_passes)

puts(ot.count_the_oranges)

puts(ot.height)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.one_year_passes)

puts(ot.height)

puts(ot.count_the_oranges)

puts(ot.pick_an_orange)

This year your tree grew to 9.6m tall, and produced 119 oranges.

119

9.6

This year your tree grew to 10.0m tall, and produced 125 oranges.

Oh, no! The tree is too old, and has died. :(

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=197
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 13 198

A year later, the tree is still dead. :(

A year later, the tree is still dead. :(

A year later, the tree is still dead. :(

A dead tree is not very tall. :(

A dead tree has no oranges. :(

A dead tree has nothing to pick. :(

That’s pretty much how I would do it, too: clean and simple.

Interactive Baby Dragon (from on page 133)

How you could do it:

using the Dragon class from the chapter

puts 'What would you like to name your baby dragon?'

name = gets.chomp

pet = Dragon.new name

while true

puts

puts 'commands: feed, toss, walk, rock, put to bed, exit'

command = gets.chomp

if command == 'exit'

exit

elsif command == 'feed'

pet.feed

elsif command == 'toss'

pet.toss

elsif command == 'walk'

pet.walk

elsif command == 'rock'

pet.rock

elsif command == 'put to bed'

pet.put_to_bed

else

puts 'Huh? Please type one of the commands.'

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=198
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 14 199

How I would do it:

using the Dragon class from the chapter

puts 'What would you like to name your baby dragon?'

name = gets.chomp

pet = Dragon.new name

obj = Object.new # just a blank, dummy object

while true

puts

puts 'commands: feed, toss, walk, rock, put to bed, exit'

command = gets.chomp

if command == 'exit'

exit

elsif pet.respond_to?(command) && !obj.respond_to?(command)

I only want to accept methods that dragons have,

but that regular objects *don't* have.

pet.send command

else

puts 'Huh? Please type one of the commands.'

end

end

A.11 Exercises from Chapter 14

Even Better Profiling (from on page 142)

How you could do it:

def profile block_description, &block

To turn profiling on/off, set this

to true/false.

profiling_on = false

if profiling_on

start_time = Time.new

block.call

duration = Time.new - start_time

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=199
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 14 200

puts "#{block_description}: #{duration} seconds"

else

block.call

end

end

How I would do it:

$OPT_PROFILING_ON = false

def profile block_description, &block

if $OPT_PROFILING_ON

start_time = Time.new

block[]

duration = Time.new - start_time

puts "#{block_description}: #{duration} seconds"

else

block[]

end

end

Grandfather Clock (from on page 142)

How you could do it:

def grandfather_clock &block

hour = Time.new.hour

if hour >= 13

hour = hour - 12

end

if hour == 0

hour = 12

end

hour.times do

block.call

end

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=200
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 14 201

grandfather_clock do

puts 'DONG!'

end

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

How I would do it:

def grandfather_clock &block

hour = (Time.new.hour + 11)%12 + 1

hour.times(&block)

end

grandfather_clock { puts 'DONG!' }

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

DONG!

Program Logger (from on page 143)

How you could do it:

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=201
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 14 202

def log desc, &block

puts 'Beginning "' + desc + '"...'

result = block.call

puts '..."' + desc + '" finished, returning: ' + result.to_s

end

log 'outer block' do

log 'some little block' do

1**1 + 2**2

end

log 'yet another block' do

'!doof iahT ekil I'.reverse

end

'0' == 0

end

Beginning "outer block"...

Beginning "some little block"...

..."some little block" finished, returning: 5

Beginning "yet another block"...

..."yet another block" finished, returning: I like Thai food!

..."outer block" finished, returning: false

How I would do it:

def log desc, &block

puts "Beginning #{desc.inspect}..."

result = block[]

puts "...#{desc.inspect} finished, returning: #{result}"

end

log 'outer block' do

log 'some little block' do

1**1 + 2**2

end

log 'yet another block' do

'!doof iahT ekil I'.reverse

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=202
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 14 203

end

'0' == 0

end

Beginning "outer block"...

Beginning "some little block"...

..."some little block" finished, returning: 5

Beginning "yet another block"...

..."yet another block" finished, returning: I like Thai food!

..."outer block" finished, returning: false

Better Program Logger (from on page 143)

How you could do it:

$logger_depth = 0

def log desc, &block

prefix = ' '*$logger_depth

puts prefix + 'Beginning "' + desc + '"...'

$logger_depth = $logger_depth + 1

result = block.call

$logger_depth = $logger_depth - 1

puts prefix + '..."' + desc + '" finished, returning: ' + result.to_s

end

log 'outer block' do

log 'some little block' do

log 'teeny-tiny block' do

'lOtS oF lOVe'.downcase

end

7 * 3 * 2

end

log 'yet another block' do

'!doof naidnI evol I'.reverse

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=203
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 14 204

'0' == "0"

end

Beginning "outer block"...

Beginning "some little block"...

Beginning "teeny-tiny block"...

..."teeny-tiny block" finished, returning: lots of love

..."some little block" finished, returning: 42

Beginning "yet another block"...

..."yet another block" finished, returning: I love Indian food!

..."outer block" finished, returning: true

How I would do it:

$logger_depth = 0

def log desc, &block

prefix = ' '*$logger_depth

puts prefix+"Beginning #{desc.inspect}..."

$logger_depth += 1

result = block[]

$logger_depth -= 1

puts prefix+"...#{desc.inspect} finished, returning: #{result}"

end

log 'outer block' do

log 'some little block' do

log 'teeny-tiny block' do

'lOtS oF lOVe'.downcase

end

7 * 3 * 2

end

log 'yet another block' do

'!doof naidnI evol I'.reverse

end

'0' == "0"

end

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=204
http://www.it-ebooks.info/

EXERCISES FROM CHAPTER 14 205

Beginning "outer block"...

Beginning "some little block"...

Beginning "teeny-tiny block"...

..."teeny-tiny block" finished, returning: lots of love

..."some little block" finished, returning: 42

Beginning "yet another block"...

..."yet another block" finished, returning: I love Indian food!

..."outer block" finished, returning: true

Report erratum
Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://books.pragprog.com/titles/ltp2/errata/add?pdf_page=205
http://www.it-ebooks.info/

Index
Symbols
! operator, 54

comments, 47

<, 41

<=, 42

==, 42

>, 41

>=, 42

[...] (), 118

** (exponentiation), 37

:: operator, 40

% (modulus), 37

&& operator, 54

~ in prompt, 6

< (), 89

\n (escape), 104

A
abs, 37

Alphabetizing, 42, 90

Angry boss program, 36

Arithmetic, 11–12

exponentiation, 37

factorials, 84

modulus and, 37

numbers vs. digits, 16

strings and, 15

Arrays, 116

described, 59–61

each (), 62–63

for English number example, 93

exercises for, 66

index numbers for slots, 60

iterators and, 63

methods for, 64–65

variables and, 63

ASCII characters, 34, 90

ask (), 83

Assignment, 19

B
Baby dragon exercise, 128–132

Bed-wetting experiment, 67, 79, 83

Bignums, 28

Blocks

exercises for, 143

iterators and, 63

methods and, 147

overview of, 134–135

parameters and, 135

passing to methods, 140–142

specifying, 62

Branching, 43–48

C
Calculator program, 11–12

capitalize (), 34

center (), 34–36

cheat (), 127

chomp (), 27, 57

chr (), 118

Civilization III example, 85

Classes

baby dragon exercise, 128–132

Class class, 121

creating, 123–124

exercises for, 115, 120, 123, 133

Hash class, 115–116

instance variables and, 124–127

methods, redefining, 122–123

naming, 112

new vs. initialize, 127–128

Range class, 116

Time class, 113–114

Closures, 134

Command prompt, 5, 9

gets (), 26

Comments, 47

Comparisons, 41–43, 114

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://www.it-ebooks.info/

() 207 METHODS

compose (), 139

Computers, headaches and, 99

Constants, 40

Conversions, 23–25, 29

Core API, 146

D
Deaf grandma program, 57

Digits vs. numbers, 16

Dir[] (), 107

Directories, overview of, 3

do keyword, 62

double_this (), 73

Double-quoted strings, 103–105

downcase (), 34, 42

DRY rule, xiv, 19, 70

Duby example, 74–76

E
each (), 62–63, 141

each_even (), 141

elsif keyword, 52

end keyword, 62, 100

English number example, 90–96

Epoch, 114

Exponentiation, 37

Expressions, 77, 105

F
Factorials, 84

File.open (), 100

File.read (), 101

Files

finding, 107

opening, 100

reading, 101

renaming, 107

saving, 100–101

Fixnums, 28

Floating-point numbers, 10

Floats, 10, 11, 25

Flow control

branching, 43–48

comparisons, 41–43

exercises for, 57–58

logical operators, 51–57

looping, 48–51

Folders, see Directories

G
gets (), 26, 49

Grandfather clock example, 143

Greenwich mean time (GMT), 113

H
Happy birthday program, 115

Hash class, 115–116

I
Index numbers, 60

Infinite loop, 51

initialize (), 126–128

inspect (), 138

Installation

Linux, 7–8

Mac OS X, 5–7

Windows, 2–4

Instance variables, 124–127

Integer class, 123

Integers, 10, 11, 24, 113

methods for, 123

types of, 28

irb, 145

Iterators, 63

J
Jaguar, 5

join (), 64

K
Keywords, 63

L
last (), 65

Laziness, as virtue, xiv, 35

Leap year program, 58

length (), 33

Lexicographical ordering, 42

Linux, Ruby installation, 7–8

Lists, see Arrays

ljust (), 35, 36

Local variables, 72–76

Logger exercises, 143

Logic exercise, 51

Logical operators, 54

Looping, 48–51

M
Mac OS X, Ruby installation, 5–7

Math object, 40

Methods

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://www.it-ebooks.info/

MODULUS 208 RUBY

about, 30–31

for arrays, 64–65

blocks and, 140–142, 147

comparison, 41–43

defining, 71

English number example, 90–96

expressions and, 77

local variables and, 73

naming, 71

objects and, 30

parameters for, 71–72

procs and, 135–139

procs, returning, 139

recursion and, 82–88

redefining, 123

return values and, 76–80

sorting and, 88–90

from String class, 121

string vs. number, 36

strings, 32–35

wrapper, 89

Modulus, 37

N
new (), 112, 121

Newline characters, 103

new vs. initialize, 127–128

“99 Bottles of Beer” program, 57, 97, 98

Numbers

arithmetic and, 11–12

vs. digits, 16

integers and floats, 10

programming exercises, 12

random, 38–39

see also Arithmetic; Integers

O
Objects, 30

in arrays, 60

creating, 127

creating and initializing, 126

equalities, 42

instance variables and, 124

saving, 101

YAML and, 101

see also Procs; Classes

Orange tree exercise, 133

P
Parameters, 71–72

blocks and, 135

Parentheses, 31, 38

Peanut butter and jelly sandwich

example, xi–xii

Photos, renaming, 107

PickAxe, 145, 146

Playlist exercise, 110

pop (), 65

print (), 108

private keyword, 132

Procs, 135–139

overview of, 134–135

returning, 139

profile (), 142

Profiling, 141

Programming

Angry boss example, 36

as an art form, xiv

defined, xii

DRY rule of, xiv, 19, 70

languages of, xiii

name exercise, 28

numbers exercises, 12

power of, 82

resources for, 145

Programming Ruby: The Pragmatic

Programmer’s Guide (Thomas et

al.), 146

Psychology survey program, 67, 79, 83

Public interface, 132

push (), 65

puts (), 10, 14, 25–26, 49, 65, 76

Q
Question mark, 118

R
rand (), 39, 57

Random numbers, 38–39

Ranges, 116–117

Recursion, 82–88, 93

recursive_sort (), 89

Repetition, see DRY rule

require (), 101

Return values, 76–80

reverse (), 32

rjust (), 35, 36

roll (), 125, 126

Roman numerals example, 81

Ruby

installation

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://www.it-ebooks.info/

RUBY-TALK 209 YIELD KEYWORD

Linux, 7–8

Mac OS X, 5–7

Windows, 2–4

version of, 3, 6, 8, 146

ruby-talk, 145, 146

S
Saving

importance of, 99

“99 Bottles of Beer” program, 98

with one method call, 105

string files, 100–101

YAML and, 101–103

SciTE, 2, 7

Scope operator, 40

Seed, 39

showing (), 125, 126

Slots, 60, 115, 116

sort (), 88

Sorting, 88–90

Spaces, 15, 35

square (), 75

srand (), 39

Standard Library, 146

Strings

arithmetic and, 15

arrays and, 118–119

assignment and variables, 19

case of, 34

comparing, 42

conversions, 23–25

described, 14

double-quoted, 103–105

hash slots and, 116

methods and, 32–35

newline characters and, 103

numbers vs. digits, 16

range, 116

spaces and, 15, 35

troubleshooting, 16–18

variables and, 105

YAML, 102

swapcase (), 34

Syntax coloring, 1

T
Table of contents exercise, 66

Text editors, 1, 2, 5, 7

TextMate, 5

TextWrangler, 5

Thomas, Dave, 146

“Tim Toady”, 147

Time class, 113–114

TMTOWTDI, 147

to_s (), 33

Troubleshooting

command prompt, 9

computer nature and, 99

gets (), 26

strings and numbers, 16–18

U
Ubuntu, 8

unless keyword, 147

upcase (), 34

V
Variables, 19–21, 22f, 28–29

instance, 124–127

local, 72–76

use of, 105

Versions, Ruby, 3, 6, 8, 146

W
Warning, 31

while keyword, 83

Windows, Ruby installation, 2–4

Wrapper method, 89

Y
YAML, 101–103, 105–107, 110

yield keyword, 148

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://www.it-ebooks.info/

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of July 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with

Ruby

2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Continued on next page

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

pragprog.com
http://www.it-ebooks.info/

Title Year ISBN Pages

Learn to Program, 2nd Edition 2009 9781934356364 230

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy

Production-Ready Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Continued on next page

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://www.it-ebooks.info/

Title Year ISBN Pages

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://www.it-ebooks.info/

All About Ruby

Programming Ruby 1.9 (The Pickaxe for 1.9)
The Pickaxe book, named for the tool on the cover,

is the definitive reference to this highly-regarded

language.

• Up-to-date and expanded for Ruby version 1.9

• Complete documentation of all the built-in

classes, modules, and methods • Complete

descriptions of all standard libraries • Learn more

about Ruby’s web tools, unit testing, and

programming philosophy

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

Dave Thomas with Chad Fowler and Andy Hunt

(992 pages) ISBN: 978-1-9343560-8-1. $49.95

http://pragprog.com/titles/ruby3

Everyday Scripting with Ruby
Don’t waste that computer on your desk. Offload

your daily drudgery to where it belongs, and free

yourself to do what you should be doing: thinking.

All you need is a scripting language (free!), this

book (cheap!), and the dedication to work through

the examples and exercises. Learn the basics of the

Ruby scripting language and see how to create

scripts in a steady, controlled way using test-driven

design.

Everyday Scripting with Ruby: For Teams,

Testers, and You

Brian Marick

(320 pages) ISBN: 0-9776166-1-4. $29.95

http://pragprog.com/titles/bmsft

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://pragprog.com/titles/ruby3
http://pragprog.com/titles/bmsft
http://www.it-ebooks.info/

Ruby & GUIs

FXRuby
Get started developing GUI applications using

FXRuby. With a combination of tutorial exercises

and focused, technical information, this book goes

beyond the basics to equip you with proven,

practical knowledge and techniques for developing

real-world FXRuby applications. Learn directly

from the lead developer of FXRuby, and you’ll be

writing powerful and sophisticated GUIs in your

favorite programming language.

FXRuby Create Lean and Mean GUIs with Ruby

Lyle Johnson

(240 pages) ISBN: 978-1-9343560-7-4. $36.95

http://pragprog.com/titles/fxruby

Scripted GUI Testing with Ruby
If you need to automatically test a user interface,

this book is for you. Whether it’s Windows, a Java

platform (including Mac, Linux, and others) or a

web app, you’ll see how to test it reliably and

repeatably.

This book is for people who want to get their hands

dirty on examples from the real world—and who

know that testing can be a joy when the tools don’t

get in the way. It starts with the mechanics of

simulating button pushes and keystrokes, and

builds up to writing clear code, organizing tests,

and beyond.

Scripted GUI Testing with Ruby

Ian Dees

(192 pages) ISBN: 978-1-9343561-8-0. $34.95

http://pragprog.com/titles/idgtr

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://pragprog.com/titles/fxruby
http://pragprog.com/titles/idgtr
http://www.it-ebooks.info/

Ruby on Rails

Agile Web Development with Rails
Rails is a full-stack, open-source web framework,

with integrated support for unit, functional, and

integration testing. It enforces good design

principles, consistency of code across your team

(and across your organization), and proper release

management. This is the newly updated Third

Edition, which goes beyond the award winning

previous editions with new material covering the

latest advances in Rails 2.0.

Agile Web Development with Rails: Third

Edition

Sam Ruby, Dave Thomas, and David Heinemeier

Hansson, et al.

(784 pages) ISBN: 978-1-9343561-6-6. $43.95

http://pragprog.com/titles/rails3

Advanced Rails Recipes
A collection of practical recipes for spicing up your

web application without a lot of prep and cleanup.

You’ll learn how the pros have solved the tough

problems using the most up-to-date Rails

techniques (including Rails 2.0 features).

Advanced Rails Recipes

Mike Clark

(464 pages) ISBN: 978-0-9787392-2-5. $38.95

http://pragprog.com/titles/fr_arr

Prepared exclusively for Trieu Nguyen

www.it-ebooks.info

http://pragprog.com/titles/rails3
http://pragprog.com/titles/fr_arr
http://www.it-ebooks.info/

